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Abstract

This study explores the idea of building a library of VHDL configurable compo-

nents for use in digital radar applications. Configurable components allow a designer

to choose which components he or she needs and to configure those components for a

specific application. By doing this, design time for ASICs and FPGAs is shortened be-

cause the components are already designed and tested. This idea is demonstrated with

a configurable dynamic pipelinable fast fourier transform. Many FFT implementa-

tions exist, but this implementation is both configurable and dynamic. Pre-synthesis

customization allows the FFT to be tailored to almost any DSP application, and the

dynamic property allows the FFT to calculate different length FFTs real-time. Three

objectives will be accomplished: design and characterization of the aforementioned

FFT; analysis of the error involved in the FFT calculation using different twiddle

factor bit widths; and finally an analysis of all the configurations for the synthesized

design using a 90 nm technology library. Speeds of up to 225 MHz have been simulated

for a length-1024 FFT using the 90 nm technology.
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A Modular Mixed Signal

VLSI Design Approach

for

Digital Radar Applications

I. Introduction

Since at least the year 2000 the Pentagon has seen a need for highly advanced

Electronic warfare (EW) aircraft. The Pentagon published a Kosovo after-action

report to Congress discussing how NATO forces had difficulty in targeting missile

sites [8]. Also, a separate report said the problems included interference from other

aircrafts’ jammers with friendly targeting devices. These reports preempted Congress

to begin a study in ways to improve EW. Billions of dollars are spent researching and

developing newer and more advanced radar systems. In addition to the high costs,

design and development time can take months even up to years.

In most radar systems digital signal processing (DSP) is used extensively. DSP

is the study of signals in a digital representation and the processing methods of these

signals. The main goal of DSP is to filter to measure real-time analog signals. An

analog-to-digital converter (ADC) is used initially to transform analog signals used in

radar communications into digital signals. Many types of filters and transforms are

used in DSP. These functions are implemented in some type of Application Specific

Integrated Circuit (ASIC). A general conventional design flow for ASICs is as follows:

1. Functional Specifications

2. Design Partitioning

3. RTL (RTL) Design & Simulation

4. Functional Verification

5. Synthesis for Area & Timing Optimizations

1



6. Placement & Routing

7. Chip Fabrication

This design flow is limited due to the length of time needed to make an ASIC.

The RTL and Simulation process (Step #3) itself can take many weeks or months

to complete, depending on the complexity of the design. The design flow is also

limited by the high costs associated with it and the ASIC’s limited flexibility. To

solve this problem, a speedy and adaptable design flow will be proposed by placing

pre-defined modular components into a library. This library will consist of highly

customizeable and configurable codes of DSP functions that can target either ASICs

or field programmable gate arrays (FPGA) to produce circuits to suit the intended

applications. The development of this library will be a time consuming process in

itself, but once the library is complete all a designer must do is pick and choose

which components from the library he or she wants to use. The components will

be configurable so there will be limitless design possibilities. Performing this work

in-house will save the Department of Defense (DoD) from having to out-source to

companies such as Boeing or Raytheon, who could charge millions of dollars to produce

such a product.

1.1 Specific Issue:

DSP is an extremely important function in radar applications. The processing

of digital data must be performed as fast as possible so the warfighter has the ad-

vantage in any combat situation. One such component in DSP is the Fast Fourier

Transform (FFT). The FFT is an algorithm for converting a digital signal in the

time domain to a signal in the frequency domain. One of the original uses of the

FFT was to distinguish between nuclear explosions and natural seismic events. These

two phenomena produce different frequency spectra. By converting the signals to the

frequency domain a distinction between the two events could be seen. Aircraft have

different radar signatures, so by using the FFT on the radar signals received the pilot

can see the aircraft’s location and speed. In this research a configurable FFT will be

2



developed for the aforementioned library. In addition, this FFT will be dynamic; i.e.

it will be able to calculate different length FFTs real-time. This implementation will

be using a 90 nm technology library from the Taiwan Semiconductor Manufacturing

Company (TSMC). Results from this library will be compared to those of the AMI

350 nm library from Oklahoma State University. The 90 nm technology will provide

for faster speeds and lower power consumption compared to those of the 350 nm

library.

1.2 Problem Statement:

The problem to be solved is the demonstration of a modular digital radar library

by designing and characterizing one possible component. The FFT being designed

will be both configurable and dynamic. The configurable parameters can be changed

pre-synthesis and the dynamic parameters can be changed at run-time. To keep the

chip size small and power consumption low, a minimal hardward approach will be

used. This will result in a longer design time for each component in the library but

will allow for the most efficient design.

1.3 Scope and Assumptions:

It is assumed that readers of this paper will have a basic understanding of dig-

ital signal processessing and more specifically FFTs. Additionally, strong knowledge

of the Very-High-Speed Integrated Circuit(VHSIC) Hardware Descriptor Language

(VHDL) is required to understand the coding of the design. The software used for

this research includes Modelsim for circuit simulations, MATLAB for simulations and

error analysis, and the Cadence Encounter RTL compiler for synthesis and power,

timing, and area analysis. A knowledge of simple digital logic components is also

assumed. Such components include muxes, adders, and pipeline registers.

3



1.4 Thesis Organization:

The next chapter of this research project will discuss background information

necessary to understand the scope of this project. A discussion of the mathematics

and algorithms for the FFT is included. Additionally several current (within the past

5 years) FFT implementations will be analyzed and their results discussed. Chapter

III will consist of the theory involved in the design of the FFT architecture and the

methods of testing used. The results of the implementation and characterization

will be discussed in chapter IV. Finally, a review and a look at future topics will be

discussed in chapter V. All VHDL code will be viewable in the appendices.

1.5 Chapter Summary:

The purpose of this research project is to characterize and implement an FFT

component for use at the Air Force Research Lab (AFRL). Pending a successful

demonstration of this component, the component will be included in a future library

of many configurable DSP functions, saving the U.S. military millions of dollars in

addition to many months of design time.

4



II. Background

This chapter provides an overview of the research involved in understanding the

scope of this thesis. Fourier transforms and specifically FFTs are reviewed.

Two FFT algorithms are discussed, as one will be used in the FFT implementation.

Many FFT implementations are available in the IEEE database. Several of the most

recent implementations and their claimed results are analyzed.

2.1 Fourier Transform

To understand the derivation and need for the Fast Fourier Transform, we will

first look at the Fourier Transform. The Fourier transform and series are named

after the French scientist and mathematician Joseph Fourier. The equation for the

Fourier Transform is given in (2.1). It is a generalization of the complex Fourier

Series [4]. This equation takes a signal in the time domain and transforms it into the

frequency domain. Information such as frequency range and energy can be obtained

from the frequency domain representation. Figure 2.1 shows an example of such a

transformation.

X(f) =

∫
∞

−∞

x(t)e−j2πftdt (2.1)

0 5 10 15 20 25 30
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

(b)

Figure 2.1: Signal representation in (a) time domain (b) frequency domain

5



2.2 Discrete Fourier Transforms

The Fourier Transform worked on continuous signals. In fields such as signal

processing, signals are usually sampled. These sampled signals are called discrete

signals. To calculate the Fourier Transform of a discrete signal, the Discrete Fourier

Transform (DFT) is used. James Tsui explains the two limitations of the continuous

Fourier transform in his book [21]:

First, the function in the time domain must be representable in closed
form so that the Fourier integral can be performed. Thus, unless the
input function can be written in closed form, it is impossible to evaluate
the integral. Second, even if the time function can be written in closed
form, it might also be difficult to find a closed-form solution to the integral.

The data to be transformed comes from an ADC, so it is digitized and the function

in the time domain is unknown. Unlike the Fourier transform, the DFT can be

performed on any kind of input data; therefore, its usage is unlimited [21]. Also, the

results from a DFT are an approximate solution.

The general definition of the DFT is as follows: let x(n), n = 0, 1, 2...., N − 1,

be an N-point sequence. From [18], the definition of its discrete Fourier transform is

X(k) =
N−1∑
n=0

x(n)e−j 2π
N

nk, k = 0, 1, 2, ..., N − 1 (2.2)

For convenience, denote e−j 2π
N

nk by WN , so equation (2.2) becomes:

X(k) =

N−1∑
n=0

x(n)W kn
N , k = 0, 1, 2, ..., N − 1 (2.3)

which can be expanded into

X(k) = x(0)W 0
N + x(1)W k

N + x(2)W 2k
n + ... + x(N − 1)W

(N−1)k
N (2.4)

The WN term is called the nth root of unity, also known as a “twiddle factor”. This

term was coined by Gentleman and Sande in 1966, and has since become widespread

6



in the world of FFTs [9]. From equation (2.4), the calculation of each X(k) requires

N complex multiplications and N complex additions. Since X(k) is calculated from 0

to N-1, the direct computation of the DFT requires on the order of N 2 multiplications

and N2 additions. The complexity of this equation is O(N 2). For example, a 1024

point DFT would require approximately 2,097,152 operations! Fortunately there is

an algorithm which will reduce the complexity from O(N 2) to O(N log2 N). For the

same 1024 point FFT, only about 20,480 operations will be needed, a large decrease

which means a faster calculation. This algorithm is called the Fast Fourier Transform.

2.3 Fast Fourier Transforms

In 1805, Carl Friedrich Gauss describes the critical factorization steps for the

FFT. Almost 150 years later in 1965 James Cooley and John Tukey formally publish

the algorithm for the FFT [7]. They exploited the symmetrical properties of complex

exponentiation reducing the complexity to N log2 N . There are two variations of the

FFT algorithm, the Decimation-In-Time (DIT) FFT algorithm and the Decimation-

In-Frequency (DIF) FFT algorithm.

2.3.1 Decimation-In-Time FFT. Cooley and Tukey, using the Danielson-

Lanczos Lemma from 1942 [16], developed what is known as the decimation-in-time

FFT algorithm. This lemma is only applicable if the length is a power of 2. From

now on, we will assume N , the length of the transform, is a power of 2. The allowable

lengths in the VHDL implementation range from 4, 8, 16, ..., up to 1024. For the

DIT algorithm, x(n) is divided into two sequences, each of length N/2. The even-

indexed samples and odd-indexed samples are grouped separately. Equation (2.2) can

7



be rewritten as

X(k) =
N−1∑
n=0

x(n)e
−j

2πnk

N

=

N
2
−1∑

n=0

x(2n)e
−j

2π(2n)k

N +

N
2
−1∑

n=0

x(2n + 1)e
−j

2π(2n + 1)k

N

=

N
2
−1∑

n=0

x(2n)e
−j

2πnk
N
2 + e

−j
2πk

N

N
2
−1∑

n=0

x(2n + 1)e
−j

2πnk
N
2 (2.5)

= DFTN

2

[[x(0), x(2), ..., x(N − 2)]] + W k
NDFTN

2

[[x(1), x(3), ..., x(N − 1)]]

The simplifications in equation (2.5) show that all frequency outputs X(k) can

be computed as the sum of the outputs of two length N
2

DFTs, using the even-

indexed and odd-indexed discrete samples respectively. The odd-indexed short DFT

is multiplied by a “twiddle factor” term, WN . Because the samples are split into two

separate groups, this algorithm is called a “radix-2” algorithm. Other such algorithms

exist for radix-4 and radix-8, but will not be discussed in this paper. Since the time

samples are rearranged in alternating groups, this algorithm is called decimation in

time. Figure 2.2 shows how this process begins by breaking the inputs up into two

N/2 DFTs. The recombine stage shown in the figure is used to combine the samples

in the correct order. This process is covered later. Now, the two N/2 stages can

be broken down into four N/4-point DFS, as shown in Figure 2.3. This process is

repeated until a series of two-point DFTs are reached. Figure 2.4 shows the flow

graph for a two-point FFT. This structure is also known as a butterfly.

Figure 2.5 shows an example for a length of 8. Notice the “out-of-order” ordering

of the inputs. Actually, this is bit-reversed ordering, and is a natural process due to

the mathematics of the FFT. To obtain a bit reversed number simply take the binary

equivalent, reverse the order of the bits, and recalculate the decimal equivalent from

that. Table 2.1 shows how the numbers are bit-reversed.

This process also allows for in-place computation, which means the results of

8



Figure 2.2: Decimation-in-time of a length N DFT into two length N/2 DFTs
followed by a recombining stage. [18]

the calculations at any stage can be stored in the same memory locations as those

of the input to that stage. This idea is illustrated in Figure 2.5. The calculations of

X(0) and X(4) require the same two inputs. Once this calculation is complete the

two inputs are no longer needed, so the calculated butterfly values of X(0) and X(4)

can be stored in the memory locations of X(0) and X(4). Because of this, only 2N

storage locations are needed.

9



Figure 2.3: Decimation-in-time of a length N DFT into four length N/4 DFTs
followed by a recombining stage. [18]

Figure 2.4: Flow graph for computation of a two-point DFT. [18]
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Figure 2.5: Decimation-in-time of a length 8 DFT. [18]

Table 2.1: Bit-reversed order for N=8.

Decimal Binary Bit-Reversed Decimal

Number Representation Representation Equivalent

0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7
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2.3.2 Decimation-In-Frequency FFT. Two gentlemen by the name of Sande

and Tukey developed the decimation-in-frequency algorithm [19]. The DIF algorithm

works backward from the DIT algorithm. Instead of dividing the input sequence x(n)

into smaller subsequences, the output sequence X(k) is subdivided. The algorithm

consists of arranging the DFT into two parts: calculation of the even-numbered fre-

quency indices X(k) for k = 0, 2, 4, ..., N − 2 and calculation of the odd-numbered

frequency indices k = 1, 3, 5, ..., N −1, or X(2r) and X(2r+1), respectively. We have

X(2r) =

N−1∑
n=0

x(n)W 2rn
N

=

N
2
−1∑

n=0

x(n)W 2rn
N +

N
2
−1∑

n=0

x(n +
N

2
)W

2r(n+ N
2

)

N

=

N
2
−1∑

n=0

x(n)W 2rn
N +

N
2
−1∑

n=0

x(n +
N

2
)W 2rn

N 1 (2.6)

=

N
2
−1∑

n=0

(x(n) + x(n +
N

2
))W rn

N
2

= DFTN
2
(x(n) + x(n +

N

2
))

and

X(2r + 1) =

N−1∑
n=0

x(n)W
(2r+1)n
N

=

N
2
−1∑

n=0

(x(n) + W
N
2

N x(n +
N

2
))W

(2r+1)n
N

=

N
2
−1∑

n=0

((x(n) − x(n +
N

2
))W n

N)W rn
N
2

(2.7)

= DFTN
2
(x(n) − x(n +

N

2
)W n

N)

Notice only the odd-indexed frequencies are multiplied by the twiddle factors. Also

the frequency samples are computed separately in alternating groups, hence the dec-
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imation in frequency designation. The inputs of the DIF FFT are in order and

the outputs are now in bit-reversed order, opposite of the DIT algorithm. It is for

this reason the DIF algorithm is chosen for the VHDL implementation. Either way,

re-ordering hardware is necessary to arrange the data before or after the FFT calcu-

lation. Figure 2.6 shows the first stage with the FFT being split into two N/2 DFTs.

These N/2 DFTs are broken down until a length-two DFT is found. This is shown

in Figure 2.7.

Figure 2.6: DIF of a length N DFT into two length N/2 DFTs. [18]

2.4 VHDL

With the background and mathematics for a FFT in place, a vehicle to create

the FFT circuit will now be discussed. There are several high-level languages which

can be used to describe a digital circuit. VHDL is a popular design entry language for

13



Figure 2.7: DIF of a length 8 DFT. [18]

FPGAs and ASICs. Another popular language is Verilog. One advantage VHDL has

over Verilog is the ability to use generate statements. Generate statements are used to

include many concurrent VHDL statements. In a modular design, generate statements

will be used heavily to create the module using the least amount of transistors, thus

reducing power, timing, and cell area. Once the VHDL code has been tested for

errors and the simulations are correct, the next step is synthesis. Synthesizing takes

the high-level description and produces a gate netlist. The gate netlist is generated

by the Cadence Encounter RTL Compiler software and uses cells from the TSMC 90

nm library.

2.5 Other FFT Implementations

By looking at other FFT implementations one can get an understanding of

what technologies were used, what the targeted results are, and any other novel
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ideas in an FFT design. Performing a search in the IEEE Xplore online database,

the Opencores website (www.opencores.org), or Google on FFTs will show many

different implementations of FFTs in VHDL and/or Verilog. In [23] a reconfigurable

FFT which can compute lengths from 4 to 1024 is discussed. The author uses a

radix-2 FFT algorithm. An overall view of the architecture is shown in Figure 2.8.

Figure 2.8: Overall architecture of reconfigurable FFT processor [23]

The butterfly block (BB) carries out the butterfly calculations. Twiddle factors

are stored in memory, called the coefficient memory cluster (CMC). The module stores

512 coefficients, enough to satisfy the requirements of a length 1024 FFT. The 512

twiddle factors are divided into 64 smaller modules called coefficient memory modules

(CMM), with each module storing 8 values. Different coefficient sets are obtained by

combining various CMMs. One set of CMMs will provide twiddle factors for a length

16 FFT. For larger lengths, CMMs are combined together to form a larger memory.

The DMC, or data memory cluster, is composed of two 512x32-bit memories, giving

a total of 1024 memory locations. The address generation block (AGB) generates
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addresses for both the DMC and CMC. These reconfigurable modules can compute

addresses for different FFT lengths. The data switch (DS) routes the butterfly cal-

culations to the correct DMC modules, using the addresses which are determined by

the address switch (AS). The CB, or control block, contains counters which generate

addresses and timing for the entire design. The author used the Verilog language

to design the processor, and the design was synthesized to the UMC 0.18µm CMOS

standard cell library with the Synopsys Design Compiler [23]. Table 2.2 shows the

power and area results after synthesis. The area is constant because this processor

is able to compute FFTs of length 16 through 1024. With each increase in FFT

length, the consumed power increases. This is expected because more calculations

are performed with larger length FFTs.

Table 2.2: Power and Area Results [23]

FFT Size 16 32 64 128 256 512 1024
Power

Consumption 4.7 7.9 8.3 13.0 26.1 49.7 81.6
(mw)

Area (mm2) 2.9

In articles [10], [11], and [20] a pipelinable FFT architecture is presented. This

type of architecture will ultimately be used in the design of the configurable/dynamic

FFT proposed in this research. As such, the overall design will not be discussed until

a later chapter. Pipelining the FFT processor allows for faster speeds to be achieved.

In [11] the author designs a length 1024 FFT in VHDL, and synthesizes with a 0.5µm

Complementary Metal-Oxide Semiconductor (CMOS) technology. Speeds of about

20 MHz have been achieved. This design is not configurable and can only calculate

a length 1024 FFT. Another design following the pipeline architecture is mentioned

in [20]. Again, this implementation is limited to a length of 1024. This author

uses Handel-C to implement the FFT processor. Handel-C is a direct C-to-hardware

language, and can be synthesized directly to high density FPGA devices from Altera
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or Xilinx [1]. It is based on the C programming language. The author reports a speed

of 82 MHz for a 1024-point FFT.

2.6 Chapter Summary

The background of the FFT was discussed, along with several algorithms used

to compute FFTs. Several current FFT implementations and their results were also

briefly examined. These results will be compared to the results of this research.
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III. Methodology

The methodology for the dynamic configurable FFT will now be discussed. The

goal of this research is to show the feasibility of creating a library with many

configurable DSP modules. The design to be implemented and demonstrated is a

configurable dynamic FFT. The design for the FFT architecture is based on [10], [11],

and [20]. Information on twiddle factors is found in [3]. The overall design is discussed

first, followed by a detailed analysis of the major components found in the architecture.

Minor components such as muxes and shift registers are assumed to be known, so their

design will be omitted. One of the main reasons for creating configurable components

is to be able to take a generic component and conform it to a specific application.

These configurable parameters are processed before synthesizing. The configureability

of the FFT is shown in Table 3.1.

Table 3.1: Configurable parameters.

Parameter Description

input width bit width of real and imaginary parts of input data
output width bit width of real and imaginary parts of output data
tf width bit width of real and imaginary parts of twiddle factors
log2N maximum length of FFT (log2 of length); integer between 2 and 10
r1-r10 radix position of fixed rounders
c1-c10 clipping required for each fixed rounder
ri input register; none or plr (pipeline register)
ro output register; none or plr (pipeline register)
pl pipeline FFT; yes or no
rt register reset type; none, synch, or asynch
nc number of different lengths; integer between 1 and 8

3.1 Overall Design

The inputs and outputs for the FFT are shown in Table 3.2. The FFT imple-

mentations is based on the Radix-22 Single-path Delay Feedback (R22SDF) architec-

ture, and uses the DIF algorithm. Input data is processed in-order and the output

is produced in bit-reversed order. The FFT receives N/2size complex inputs sequen-
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Table 3.2: Inputs and Outputs.

Parameter Description

d in r real part of complex data input
d in i imaginary part of complex data input
q out r real part of complex data output
q out i imaginary part of complex data output
frame in framing control signal; forces FFT calculation to begin on next input sample
frame out framing control signal; next output is result of new FFT calculation
clock rising edge sensitive clock control signal
reset n active low control signal for reset
size dynamic control signal selects length of current FFT; length = N

2size

tially and the first output sample appears after N/2size − 1 samples. The size signal

controls the dynamic property of the FFT. Changing this input changes the current

size of the FFT. An overview of the architecture is shown in Figure 3.1. The BF2I

and BF2II are the butterfly modules. The BF2I is the typical module which was de-

scribed earlier, and the BF2II is essentially the same except it takes into account the

−j twiddle factors and computes them automatically. The boxes above each butterfly

module are shift registers, with the number inside the box describing how many shifts

it performs. The W1(n) through W4(n) variables are the twiddle factors. These are

multiplied with the output of the BF2II module and passed to the next BF2I module.

The twiddle factors are approximated and stored in a ROM. Each butterfly module

has control signals which determine the calculation the module performs. These sig-

nals are generated from a timing controller. In addition to the control signals, the

timing controller generates the addresses for the twiddle factor ROMs. The length

of the FFT in Figure 3.1 is 256. If one wanted to compute a 128 length FFT, the

same architecture would be used. The differences would be the shift registers would

be halved (i.e. 128 stage shift register becomes a 64 stage shift register) and the final

BF2II module would be bypassed.
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Figure 3.1: R22SDF FFT Architecture for N=1024 [20]
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3.2 Butterfly Modules

Two butterfly modules are used, a BF2I and BF2II. On the first N/2 cycles,

the 2-to-1 multiplexors in the first butterfly module (BF2I ) are set to ’0’ and the

module is idle. The input data is shifted into the shift registers until they are filled.

On the next N/2 cycles, the butterfly module computes an N/2-point DFT with the

input data and the data stored in the shift registers. The following equations describe

the operations:

Z(n) = x(n) 0 ≤ n < N/2

Z(n + N/2) = x(n + N/2) 0 ≤ n < N/2

Z(n) = x(n) + x(n + N/2) N/2 ≤ n < N

Z(n + N/2) = x(n) − x(n + N/2) N/2 ≤ n < N (3.1)

A physical implementation of the BF2I module is shown in Figure 3.2

Figure 3.2: BF2I Module [3]
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The BF2II module is similar in operation, except it takes into account the trivial

twiddle factor multiplication of −j. The following equations describe the operations:

Z(n) = x(n) 0 ≤ n < M/4

Z(n + N/2) = x(n + N/2)

Zreal(n) = xreal(n) + ximag(n + N/2) N/4 ≤ n < N/2

Zimag(n) = ximag(n) − xreal(n + N/2)

Zreal(n + N/2) = xreal(n) − ximag(n + N/2)

Zimag(n + N/2) = ximag(n) + xreal(n + N/2)

Z(n) = x(n) N/2 ≤ n < 3N/4

Z(n + N/2) = x(n + N/2)

Z(n) = x(n) + x(n + N/2) 3N/4 ≤ n < M

Z(n + N/2) = x(n) − x(n + N/2) (3.2)

A physical implementation of the BF2II module is shown in Figure 3.3

Figure 3.3: BF2II Module [3]
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3.3 Twiddle Factors

The generation of the twiddle factors, or complex roots of unity, for the FFT

will determine the amount of error between the VHDL implementation and real FFT

calculation in MATLAB. These values are precomputed and their binary representa-

tion is stored in a ROM. The bit width selected for the twiddle factors will control

the amount of error. Choosing a large bit width guarantees greater accuracy at a

cost of larger die area and higher power consumption. On the other hand, a small

bit width generates a smaller area and power consumption but larger error. In the

VHDL implementation, they are based on the module length M and the FFT length

N . The equation to calculate these values is

Wp(n) = e
−j2πq(n)

N , 0 ≤ p ≤ log4(N) − 2 (3.3)

expanding this into a trigonometric expression yields

Wp(n) = cos(
2πq(n)

N
) − jsin(

2πq(n)

N
), 0 ≤ p ≤ log4(N) − 2 (3.4)

where

q(n) = 0 ∗ 4p
∗ n

= 2 ∗ 4p
∗ (n −

Mp

4
)

= 1 ∗ 4p
∗ (n −

Mp

2
)

= 3 ∗ 4p
∗ (n −

3Mp

4
) (3.5)

The calculated twiddle factors range between 1 and −1. They are now scaled between

the max and min values based on the twiddle factor bit width. For example, if the

bit width is 10, the twiddle factor would be scaled to a value between 511 (29 − 1) to
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Table 3.3: Wx Modules.

Wx Contains twiddle factors for lengths...

0 1024, 512
1 1024, 512, 256, 128
2 1024, 512, 256, 128, 64, 32
3 1024, 512, 256, 128, 64, 32, 16, 8

-512 (−29). The real and imaginary calculations are summarized as:

Real = round(cos(θ) ∗ (2TwiddleFactorBitWidth−1
− 1)) (3.6)

Imag = round(sin(θ) ∗ (2TwiddleFactorBitWidth−1
− 1)) (3.7)

Upon storing the twiddle factors in the ROM, they must be offset by 3M/4 samples

to ensure they are aligned with the first sample in the block. If the FFT is configured

for dynamic sizes, all possible twiddle factor ROMs must be made available. For

example, if N=16 and nc=2, FFTs of length 16 and 8 can be calculated. The twiddle

factors for N=16 are different than those for N=8. In this case, the module W3

contains both ROMs and a multiplexor is used to select the correct twiddle factors

based on the currently selected size. This is the case for all dynamic lengths between

1024 and 8. Note, length-4 FFTs do not incorporate twiddle factors. The W3 module

is configurable based on N and nc, so the minimal logic is created. Table 3.3 shows

the Wx modules and the ROMs they may contain. Figure 3.4 shows the schematic

for a W3 module for a 1024 length FFT with the number of dynamic choices equal

to 8. The output of each ROM is passed to the output using the 8-to-1 mux with the

size signal performing the selection. Smaller dynamic choices use smaller muxes to

conserve chip space.

The twiddle factors are generated by running a simulation on the ROMGener-

ate.vhd file. The configurable parameters are specified in the generic listing. This
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Figure 3.4: W3 Module for a 1024 point dynamic FFT

code will generate the twiddle factors automatically and store them in a file called

TwiddleFactors.vhd. This file will need to be included in order for the entire design

to be elaborated and synthesized.

3.4 Timing

Timing is essential for all the components to work correctly. The timing con-

troller is simply a log2N -bit up counter. The timing signals are passed onto the

butterfly modules and the twiddle factor ROMs. This component also generates the

frame out signal designating the completion of the FFT calculation and the first re-

sult will appear on the q out line. The frame out signal is generated when the counter

“rolls over” to ’0’. Due to the dynamic portion of the hardware, the value at which
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the counter rolls over depends on the length of the FFT and the value of the size

signal. If a 1024 point FFT is calculated, a 10-bit counter is used. The rollover value

would then be 1111111111. If the FFT is configured to be dynamic, the rollover value

is shifted to the right by the integer value of the size signal. For example, for a 1024

point FFT, a size signal of 001 would shift the rollover values to the right by one

producing a value of 0111111111 which corresponds to a 512 length FFT. Each stage

can handle two different FFT lengths, but because the control signals to each stage

are static, the timing controller will shift the count values left one bit based on the size

signal. If pipelining is enabled, the control signals and twiddle factor addresses will

also have to be pipelined. This is handled in a module called TimingPLR. Excluding

the first stage, pipeline registers are placed around the multipliers in each stage if

enabled. This placement of pipeline registers was chosen because the critical path,

or longest delay in a circuit, always passes through the multipliers. Placing pipeline

registers around the multipliers shortens the critical path, thus increasing the fre-

quency at which the FFT can operate. The timing signals for each subsequent stage

must then be delayed by two clock cycles to make sure they meet up with the correct

values in the computation, hence the two pipeline stages in the TimingPLR compo-

nent. Because the complex multipliers are sandwiched between pipeline registers, the

twiddle factor address must be delayed by one cycle initially, then by two cycles for

each subsequent stage. The TimingPLR module takes as an input the twiddle factor

address signal, but has two outputs for the address. The first output is delayed by

one cycle to be used in the current stage and the second is delayed by two cycles to

be used in the next stages. Figure 3.5 shows the timing controller and first set of

pipeline stages for a length-1024 FFT.

3.5 Stage 1

Figure 3.6(a) shows a diagram of the stage 1 component, and Figure 3.6(b)

shows the corresponding flow graph. The dashed lines correspond to complex data.

For this example a N/4 length such as 4, 16, 64, etc is assumed. Data enters the
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Figure 3.5: Timing Controller and pipeline for a 1024 point dynamic FFT

first butterfly module at the x(n + M/2) input. The first two values are passed into

the 2-stage shift register. The third and fourth data point are “butterflied” and the

output is passed onto the fixed rounder. These represent the top two lines in the

second stage shown in Figure 3.6(b). The outputs to go into the bottom two lines are

put back into the shift register and held for two cycles until they can be placed into

the second butterfly module. The −j multiplication is build into the BF2II module.

This module will compute the last two 2-point DFTs and pass the output to the final

fixed rounder and q out in bit-reversed order. If the length were an N/2 length such

as 8, 32, 128, etc, then only BF2I would be used to compute a 2-point DFT and the

BF2II would be bypassed. The sign extend extends the bit width by one because

the BF2I and BF2II modules automatically increase the bit width by one during

operation.

3.6 Stage X

Figure 3.7 shows a diagram of the rest of the stages. These generic stages are

essentially the same except for the configurable parameters of the fixed rounder, the

shift registers, and Wx(n) modules. Operation is the same as in the first stage, but
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Figure 3.6: Stage 1 of FFT and Flow Graph Comparison

this time the twiddle factors and a complex multiplier are included. If the FFT

is configured for pipelining, then pipeline registers are placed before and after the

complex multiplier.

Figure 3.7: Stage X of FFT
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3.7 Completed Design

Connecting the timing controller and the different stages togethers is not as easy

as it sounds. Due to the configurable and dynamic nature of the FFT, all possible

scenarios must be considered while keeping the hardware usage at a minimum. As an

example, a 1024 length dynamic length (nc = 8) FFT is shown in Figure 3.8.

Figure 3.8: Layout of a 1024 length dynamic FFT

This configuration has data select logic to determine which stage the input data

should begin. For example, for a 1024 or 512 length the input data should enter stage

5. For a length 256 or 128, the data should bypass stage 5 and begin in stage 4.
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In addition, the data select logic selects between using the d in data or the results

from the previous stage. This logic is essentially a mux (2 or 4 input mux with

the unused inputs grounded). The select bit(s) logic for the mux is generated using

Karnaugh maps and the size signal. If a stage is not to be used, then the inputs are

grounded to prevent usage of the elements within the stage, reducing power usage

and heat generation. The sign extender between each stage extends the bit width of

the input data, which is due to the bit growth of the butterfly modules and twiddle

factor multiplications. With a static 1024 length FFT, there would be no data select

logic blocks; instead the data would pass right through. Generate statements are

used heavily for this portion of FFT code. The structural definition of the code

begins by instantiating a timing controller. After that, each case is broken down by

the configured length. In each of these cases, all possible lengths (based on the nc

parameter) is broken down. Again, to prevent unnecessary chip space usage, generate

statements are used. If pipelining is configured, then pipeline registers are placed

to control the arrival time of the butterfly module control signals, twiddle factor

addresses, and the frame out signal. The logic for the pipeline controls whether the

pipeline is turned on or not. In the 1024/512 case, all pipeline registers should be

functioning. For the 256/128 case, the first set of pipeline registers should be turned

off so the signals arrive correctly. The logic for controlling this functionality is again

determined by Karnaugh maps.

3.8 Testing Procedure

There are two major areas on which testing will be performed. First, the Ca-

dence Encounter RTL compiler will be used to analyze the timing, power, and chip

area used by all the configurations of the FFT. For the timing analysis, all the pos-

sible lengths (4 to 1024) and all possible dynamic sizes (1 to 8) will be synthesized

for both the pipelined and non-pipelined versions. Power and cell usage analysis will

be performed with the same parameters, except only the pipelined version will be

examined. This will give an overall outlook on the configurable properties and what
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effects it has. A PERL script, located in Appendix A, was written to perform these

tests. The script first will modify the configurable parameters in the FFT.vhd file.

Next, the Cadence RTL compiler is invoked via the command line with a synthesizing

script passed as an argument to the compiler. This script sets up the 90 nm library,

loads the VHDL files, synthesizes the design, and generates reports for the timing,

cell usage, and power consumption. This script is also located in Appendix A.

The next major area is error analysis. This will be performed using MATLAB

and Modelsim for simulations. The results from the MATLAB FFT function will be

compared to those of the VHDL FFT implementation. Even though there is negligi-

ble error in the MATLAB due to the IEEE 754 floating point format, the MATLAB

results will be the baseline for these tests. The twiddle factor bit width and it’s effect

on data will be analyzed. By varying the twiddle factor bit width, one can change the

amount of error in the VHDL FFT compared to that of the MATLAB FFT function.

The testing procedure for this is as follows: A cosine function is generated and the

data points are sampled and placed into a text file. The FFT VHDL testbench opens

this file and reads the data as inputs. The output is generated and placed into a

different text file. MATLAB then resumes and reads in the VHDL FFT output data.

A comparison of each output point is made between the MATLAB FFT function and

the VHDL FFT function. A stem plot is generated showing the % error between

both functions. In addition, statistics are generated for this set of data. This test is

performed on all FFT lengths with varying twiddle factor bit widths. The MATLAB

m-files which perform this testing are found in Appendix B. Additionally, a frequency

sweep test will also be examined. A frequency ranging from 0 Hz to 2.5 GHz in steps

of 10 MHz will be applied to the FFT. For each frequency step, a length-256 FFT will

be calculated both in MATLAB and the VHDL FFT. The average and max percent

error for a range of twiddle factor bit-widths and input bit-widths will be discussed.
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3.9 Chapter Summary

The design of a configurable/dynamic FFT processor was discussed in this chap-

ter. The overall design was introduced and then broken down into many smaller

components. The design analysis was performed on each of these components, along

with the different configurations of each. Each subcomponent was thoroughly tested

in order to reduce the possible errors when assembling the final design. Additionally,

testing procedures were developed to test both the error in the FFT calculations and

the physical attributes such as power and timing.
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IV. Analysis and Results

This chapter analyzes the results from the testing procedures discussed in the

previous chapter. The data results will be examined first in the error analysis

section. Next, the area and timing results from synthesis will be evaluated.

4.1 Error Analysis

4.1.1 Simple Cosine Curve. Due to the digital nature of the FFT algorithm

and the use of approximate values for the twiddle factors, there will be error in the

VHDL results as compared to those of the MATLAB FFT function. A comparison

of twiddle factors with bit-widths of 6, 8, 10 ,and 12 are examined. A summary is

shown in Figure 4.1 and figures 4.2 to 4.9 show detailed plots of the error between

the VHDL and MATLAB FFT functions for each point of the N-length FFT. The

error is calculated using the equation error = V HDL−MATLAB
MATLAB

∗ 100%. The analysis

is performed on absolute values of the real and imaginary data outputs. The input

bitwidth used is 10 bits. We will begin the analysis with the length-8 FFT as this is

the first length to use twiddle factors in the calculations. An FFT of length 4 does not

use twiddle factors, therefore there is no error between the VHDL and MATLAB data.

The stem-and-leaf plot in Figure 4.2 shows the percent error between the MATLAB

and VHDL values for each value of n. The results show relatively small error except

for n values of 6 and 7. This is due to the twiddle factor approximation. For the n=6

case, the exact twiddle factor would be (−cos(π
4
),−j ∗ sin(π

4
)). Expanding this out

yields a results of (−0.70710678,−0.70710678j). Because the twiddle factors in the

VHDL implementation are scaled integer values, the result is scaled from a range of

(−1, 1) up to a range of (−2tfbw−1−1, 2tfbw−1−1), where tfbw is the twiddle factor bit

width. For a twiddle factor bit width of 10, this range becomes (−511, 511). Scaling

the n=6 twiddle factors results in values of (−361.331565,−361.331565j). These

values are ultimately rounded to (−361,−361j). A negligible 2% error is introduced

with this rounding. Increasing the twiddle factor bit width will reduce this error, but

with an increase in chip area and power consumption. Figure 4.3 shows the plot of

the FFT data and error analysis for a length-16 FFT. The results are similar to that
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of a length-8 FFT. With length-32 and length-64 FFTs, two sets of twiddle factors

are now used. Because of this, the error in the first set of twiddle factors is now

multiplied by using a second set of factors. This is evident in Figure 4.4 as the errors

for each twiddle factor length are now larger than in the length-8 and length-16 case.

This trend continues with Figures 4.5 - 4.9. The longer-length FFTs generate more

error in the data than the shorter ones. The smaller width twiddle factor bit width

used leads to a larger average error. Increasing the bit width from 6 to 8 shows a

large decrease in average error. Increasing the bit width further to 10 yields better

results, but beyond that the decrease in error is negligible.

Figure 4.1: Average % Error

4.1.2 Frequency Sweep. For the frequency sweep, input bit-widths of 8, 10,

12, 14, and 16 along with twiddle factor bit-widths of the same values will be analyzed.

The resulting frequency sweep produces a plot as shown in Figure 4.10. The average

percent error and max percent error data is shown in Figures 4.11 and 4.12. The

results for the maximum percent error show for a twiddle factor bit-width of 8 the
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Figure 4.2: Percent error between MATLAB and VHDL FFT functions for N=8 and various twiddle factor bit-widths
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Figure 4.3: Percent error between MATLAB and VHDL FFT functions for N=16 and various twiddle factor bit-widths

36



0 5 10 15 20 25 30
0

100

200

300

400

500

600

700
Twiddle Factor Bit Width =6

n

%
 E

rr
o
r

0 5 10 15 20 25 30
0

50

100

150

200

250
Twiddle Factor Bit Width =8

n

%
 E

rr
o
r

0 5 10 15 20 25 30
0

5

10

15

20

25
Twiddle Factor Bit Width =10

n

%
 E

rr
o
r

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Twiddle Factor Bit Width =12

n

%
 E

rr
o
r

Figure 4.4: Percent error between MATLAB and VHDL FFT functions for N=32 and various twiddle factor bit-widths
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Figure 4.5: Percent error between MATLAB and VHDL FFT functions for N=64 and various twiddle factor bit-widths
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Figure 4.6: Percent error between MATLAB and VHDL FFT functions for N=128 and various twiddle factor bit-widths
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Figure 4.7: Percent error between MATLAB and VHDL FFT functions for N=256 and various twiddle factor bit-widths
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Figure 4.8: Percent error between MATLAB and VHDL FFT functions for N=512 and various twiddle factor bit-widths

41



0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4 Twiddle Factor Bit Width =6

n

%
 E

rr
o
r

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800
Twiddle Factor Bit Width =8

n

%
 E

rr
o
r

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000

1200
Twiddle Factor Bit Width =10

n

%
 E

rr
o
r

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

90

100
Twiddle Factor Bit Width =12

n

%
 E

rr
o
r

Figure 4.9: Percent error between MATLAB and VHDL FFT functions for N=1024 and various twiddle factor bit-widths
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error remains the same no matter the input bit-width. This changes with twiddle

factor bit-widths of 12 and higher. With an increase in input bit-width, maximum

percent error drops for twiddle factor bit-widths of 10 - 16. The average percent error

decreases with either an increase in twiddle factor bit-width and/or input bit-width.

0 2 4 6 8 10 12

x 10
8

0

50

100

150

200

250

Frequency (Hz)

|X
(k

)|

Figure 4.10: FFT Plot of Frequency Sweep for 0-2.5GHz
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Figure 4.11: Average Error in Frequency Sweep

Figure 4.12: Maximum Error in Frequency Sweep
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4.2 Timing Analysis

For this section and the following sections, an analysis will be performed on the

physical effects of an FFT processor which can calculate one length (fixed) versus one

which can calculate several lengths (dynamic). The critical path will be studied now.

A comparison between the non-pipelined and pipelined versions is shown, using both

a 350 nm and 90 nm technology. Using two different technology libraries will show

the scaling for the timing analysis. Table 4.1 shows the parameters of the analysis.

Figure 4.13 and 4.14 shows the results of the analysis. The y-axis shows the speed

Table 4.1: Parameters for Timing Analysis

Parameter Value
log2N 3 - 10

nc 1 - 8 (based on log2N)
Input Width 10

Twiddle Factor Bit Width 10
Pipelining Off/On
Software Cadence Encounter RTL Compiler

Cell Libraries TSMC High Performance General Purpose 90 nm
AMI 350 nm

in MHz, while the x-axis is divided up by the different lengths (8 - 1024). Each

of these is subdivided by the number of allowable dynamic sizes. A trend with the

non-pipelined version shows maximum frequencies are similar for lengths using the

same stages. For example, a length-128 and length-256 FFT use the same hardware,

therefore the speeds are similar. Another trend is the larger the length, the smaller

the maximum speed. This trend is due to large adders and multipliers which occur

because the bit width of the data passing through the FFT is not rounded or clipped.

Additionally, if a dynamic FFT is needed, any value of nc > 1 produces the same

results. The pipelined version shows a doubling in maximum speed. For a length-

8 FFT, speeds of approximately 450 MHz are obtained. On the other end of the

spectrum, a length-1024 FFT can run between 200 - 250 MHz. The staggering values

are due to various critical paths in the processor. The 90 nm version is approximately

6 times faster than the 350 nm.
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Figure 4.13: Maximum frequency for pipelined and non-pipelined FFTs with input bitwidth=10 and twiddle factor
bitwidth=10 using the 350 nm technology.
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Figure 4.14: Maximum frequency for pipelined and non-pipelined FFTs with input bitwidth=10 and twiddle factor
bitwidth=10 using the 90 nm technology.
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4.3 Total Area Analysis

Table 4.2 shows the parameters for this testing. The total area needed for

each configuration are now discussed, using both the 350 nm and 90 nm libraries.

Figure 4.16 shows the results of the analysis. As expected, with each increase in

length the total area increases. Total area for lengths using the same stages are

similar, as in the case of the 32/64 lengths. The 90 nm version is approximately 44

times smaller in area than the 350 nm.

Table 4.2: Parameters for Total Area

Parameter Value
log2N 2 - 10

nc 1 - 8 (based on log2N)
Input Bit Width 10

Twiddle Factor Bit Width 10
Pipelining On
Software Cadence Encounter RTL Compiler

Cell Libraries TSMC High Performance General Purpose 90 nm
AMI 350 nm

48



(a)

(b)

Figure 4.15: Total area using 350 nm technology for log2N from (a) 2 to 8 (b) 9 to 10
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(a)

(b)

Figure 4.16: Total area using 90 nm technology for log2N from (a) 2 to 8 (b) 9 to 10
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4.4 Chapter Summary

This chapter analyzed the results of the design. The error analysis shows the

error resulting from different twiddle factor bit-widths compared to that of the FFT

function found in MATLAB. Longer-length FFTs generally encounter more error than

shorter lengths do. The frequency sweep shows how the input and twiddle factor bit-

widths affect maximum and average percent error. Additionally, the timing and total

area was analyzed for all possible configurations of the FFT processor. Increases in

hardware for longer-length FFTs provide for an increase in total die area. Small

changes are noticed with the increase in the dynamic size parameter nc.
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V. Conclusions

5.1 Explanation of the Problem

The problem to be solved was to accomplish the characterization and imple-

mentation of a FFT using a fast and portable design strategy. By developing this

type of strategy a designer can create digital components for specific functions in a

matter of hours or days, as opposed to the conventional design flow which could take

weeks or months. Developing standard components which are both configurable and

dynamic and storing them in a library, will greatly decrease the development time for

producing VLSI components for digital radar applications.

5.2 Summary of Background

A review of a variety of book, article, and internet sources was performed in

order to understand, investigate, and verify the methods and previous technologies

that support this research. A brief overview of the Fourier Transform, DFT, and FFT

was discussed. Additionally, two algorithms in computing the FFT were examined.

One of the algorithms, the DIF, was used in the implementation. Hardware descriptor

languages, namely VHDL and Verilog, were discussed along with some pros/cons of

each. Lastly, two previous implementations were analyzed.

5.3 HDL Code Development: Significance, Limitations, and Further

Research

This research successfully demonstrated the use of a modular mixed signal VLSI

design approach. An example component, the FFT, was developed and demonstrated

for many types of configurations. The 90 nm technology library allowed a design to be

synthesized using a smaller area and power consumption, in addition to faster speeds.

In addition, the design was synthesized in a 350 nm library to show the scaling be-

tween the two technologies. The maximum speed at which this FFT processor can

run is greatly enhanced also. In [11] the author demonstrates a speed of 20 MHz with

a length-1024 FFT. In this research, speeds of approximately 225 MHz have been

simulated, a speedup of nearly 1100%! Compared to the Handel-C version by [20]
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in which the author’s implementation can attain a speed of 82 MHz, this paper’s

design is 274% faster. Figure 5.1 shows a comparison between this implementation

and two other implementations [14] [15] on FPGAs. Although maximum frequency

comparisons on similar hardware vary between +/- 10%, this implementation has its

strength in being modular and portable. The VHDL is portable and self-contained,

as the twiddle factors are generated from a source VHDL file. Additionally, because

this function will be placed into a library, it is customizeable and dynamic. Before

synthesizing, a designer can modify the FFT to be used in any type of project. Also,

the dynamic properties of this FFT allow it to calculate different length FFTs during

run-time with the simple modification of one signal.

Initially, designing configurable and dynamic components is a lengthy process.

The total lines of VHDL code for the entire design is well over 11,000. All possible

scenarios must be accounted for and tested. For this implementation, there are 44

possible configurations for max length and dynamic lengths. Adding pipelining op-

tions doubles this number to 88, which leads to a lengthy testing process. Once this

is complete though, this design can be tailored to almost any specific need.

As with any type of computing device, there are several areas of research which

can be expanded on to improve the FFT implementation. Several key areas to explore

include expanding the 1024 length limit. With FFTs, the longer the length the more

accurate the signal representations in the frequency domain. Also, a combination of

the DIT and DIF algorithms will briefly be discussed as this will decrease the number

of calculations needed.

5.3.1 Expanding Beyond the 1024-point Limit. Due to the modularity of

the design, extending the maximum N value past 1024 is not difficult. A listing of

the components which would need modification are listed below:

ROMGenerate.vhd The twiddle factors W0 to W3 were referenced with W0 being

the twiddle factor for the highest number stage (i.e. stage 5) in the design and

W3 being the factors for the second stage (the first stage does not use twiddle
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(a) (b)

Figure 5.1: Previous implementation comparisons

factors). This arranging of the variables is due to the way they are presented

in the DIT and DIF algorithms. With this being said, to extend past 1024 the

twiddle factor variables must be shifted. For example, if one wanted to use a

max length of 4096, the twiddle factors would range from W0 to W4 with the

new stage 6 using W0. The only changes needed for the ROMGenerate.vhd code

would be to the main function. Here, one would change the Mp array variable,

the p for loop, and the Mp calculation.

FFT.vhd To add 2048 as a possible length, a new generate statement will be needed

(i.e. Neq2048 ). By following the previous size implementation, it is easy to

see the pattern. All the possible nc choices will have to be covered also. This

allows the minimal components necessary for each value of nc. It is helpful to

create a drawing similar to the completed design layout shown in Chapter II to

implement the necessary muxes and sign extenders. Karnaugh maps are very

useful here.

Components.vhd To follow along with the design by He and Torkelson [10], the

twiddle factors are numbered from 0 to 3 going from left to right in the de-

sign. To accommodate a larger length, these values must be ’shifted’ to the

left. Renumbering the twiddle factors in this module and adding a new W4

component will work.
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All other components are modular and do not need any modifications.

5.3.2 Implementation of a Decimation-In-Time-Frequency Algorithm. Ali

Saidi developed an algorithm which he claims reduces the number of real multipli-

cations and additions [17]. The algorithm is called “Decimation-In-Time-Frequency

(DITF) FFT Algorithm.” This reduces the arithmetic complexity while using the

same structure as the conventional Cooley-Tukey FFT algorithm. He extended the

algorithm to the radix-2 FFT implemented in this research. The author explains the

heart of the DITF algorithm is based on this observation: in the DIF algorithm most

of the calculations are performed in the early stages of the algorithm while in the DIT

algorithm most of the calculations are done in the final stages of the algorithm [17].

The author proposes starting with the DIT FFT algorithm and then switching to

the DIF FFT algorithm as some intermediate stage will decrease the amount of com-

putations needed. The flow graph in Figure 5.2 illustrates a 32-point DITF FFT

algorithm. The cost of the transition from DIT to DIF and the savings due to this

transition vary depending on the stage at which the algorithms switch. An analysis

is performed by the author in this article [17].

Table 5.1 shows the number of real multiplies for several lengths (N) for both the

Radix-2 Cooley-Tukey and the DITF algorithm, along with several other algorithms.

The data verifies the number of multiplications is smaller for the DITF algorithm,

especially for larger lengths. By decreasing the number of operations necessary to

compute the FFT, the calculation overall will be performed faster.
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Figure 5.2: 32-Point DITF FFT Flow Graph [17]

Table 5.1: Number of real multiplies for complex FFT algorithms. [17]

Size Split Radix-2 Radix-2 Radix-4 Radix-4 Radix-8 Radix-8

M N RADIX CT DITF CT DITF CT DITF
3 8 4 4 4 N/A N/A N/A N/A
4 16 24 28 24 24 24 N/A N/A
5 32 84 108 88 N/A N/A N/A N/A
6 64 248 332 248 264 264 248 248
7 128 660 908 696 N/A N/A N/A N/A
8 256 1656 2316 1784 1800 1656 N/A N/A
9 512 3988 5644 4472 N/A N/A 3992 3992
10 1024 9336 13324 10744 10248 9528 N/A N/A
11 2048 21396 30732 25336 N/A N/A N/A N/A
12 4096 48248 69644 58360 53256 49656 48280 47608
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Appendix A. FFT Synthesis Testings Scripts

Listing A.1: PERL Synthesis Script
#!/ usr / bin/ pe r l −w

# Make sure the f i l e s we need e x i s t . . .

i f (!−e " F F T . v h d " ) {

print " M i s s i n g F F T . v h d \ n " ;

exit ( ) ;

}

i f (!−e " F F T C o m p o n e n t s . v h d " ) {

print " M i s s i n g F F T C o m p o n e n t s . v h d \ n " ;

exit ( ) ;

}

i f (!−e " R O M G e n e r a t e . c l a s s " ) {

print " M i s s i n g R O M G e n e r a t e . c l a s s \ n " ;

exit ( ) ;

}

i f (!−e " F F T . c m d " ) {

print " M i s s i n g F F T . c m d \ n " ;

exit ( ) ;

}

# For th i s s e t o f t e s t s , f i x the input bitwidth and

# the twiddle f a c t o r bitwidth to 1 0 b i t s each .

$ in width = 10 ;

$ t f w idth = 10 ;

# Loop through a l l p o s s i b l e l engths . . .

for ( $log2N = 2 ; $log2N <= 10 ; $log2N++) {

# determine the max nc value .

$maxNC = $log2N − 1;

i f ( $log2N == 10) {

$maxNC = 8;

}

# loop through a l l p o s s i b l e nc va lue s

for ( $nc = 1 ; $nc <= $maxNC ; $nc++) {

print " S y n t h e s i z i n g $ l o g 2 N $ n c $ t f _ w i d t h $ i n _ w i d t h \ n " ;

# ca l c u l a t e the output width , which i s based on

# log2N , input width , and t f w idth

$temp = $log2N + ( $log2N % 2) ;

$out width = $in width + $temp ∗ 1 + ( $temp/2 − 1) ∗ $t f w idth ;

# Copy FFT template . vhd to FFT. vhd

‘ cp FFT template . vhd FFT. vhd ‘ ;

# Modify the parameters o f the FFT. vhd f i l e . . .

print " M o d i f y i n g F F T . v h d . . . \ n " ;

‘ p e r l −pi −e ’ s /# i n _ w i d t h / $ i n _ w i d t h / g ’ FFT. vhd ‘ ;

‘ pe r l −pi −e ’ s /# o u t _ w i d t h / $ o u t _ w i d t h / g ’ FFT. vhd ‘ ;

‘ pe r l −pi −e ’ s /# t f _ w i d t h / $ t f _ w i d t h / g ’ FFT. vhd ‘ ;

‘ pe r l −pi −e ’ s /# nc / $ n c / g ’ FFT. vhd ‘ ;

‘ pe r l −pi −e ’ s /# l o g b a s e 2 N / $ l o g 2 N / g ’ FFT. vhd ‘ ;

‘ pe r l −pi −e ’ s /# p i p e l i n e / Y E S / g ’ FFT. vhd ‘ ;

# Generate the twiddle f a c t o r s

print " G e n e r a t i n g T w i d d l e F a c t o r s . v h d . . . \ n " ;

‘˜/ bin / java ROMGenerate $log2N $nc $t f w idth vhdl ‘ ;

57



# I f log2N = 2 ( l ength 4 ) c r ea t e a blank TwiddleFactors . vhdl

# so Cadence won ’ t choke

i f ( $log2N == 2) {

‘ touch TwiddleFactors . vhd ‘ ;

}

# execute RTL s c r i p t . . .

print " R u n n i n g s y n t h e s i s s c r i p t . . . \ n " ;

‘ rc − f i l e s FFT. cmd ‘ ;

# copy output f i l e s to s p e c i f i c f i l e

print " C o p y i n g r e s u l t s to s y n t h _ r e s u l t s d i r e c t o r y . . . \ n " ;

$ t iming f i l ename=join ’ ’ , ’ t i m i n g _ ’ , $log2N , ’ _ ’ , $nc , ’ _ P I P E . t x t ’ ;

$a r ea f i l ename=join ’ ’ , ’ a r e a _ ’ , $log2N , ’ _ ’ , $nc , ’ _ P I P E . t x t ’ ;

$power f i l ename=join ’ ’ , ’ p o w e r _ ’ , $log2N , ’ _ ’ , $nc , ’ _ P I P E . t x t ’ ;

‘mv t iming . txt s y n th r e s u l t s / $ t iming f i l ename ‘ ;

‘mv area . txt s y n th r e s u l t s / $a rea f i l ename ‘ ;

‘mv power . txt s yn th r e s u l t s / $power f i l ename ‘ ;

}

}
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Listing A.2: Cadence Synthesis Script
# Cadence RTL Compiler (RC)

# ver s i o n 05.20 −p002 (32− b i t ) bu i l t Nov 28 2005

#

# Run with the f o l l ow i ng arguments :

# − l o g f i l e rc . l og

# −cmdf i l e rc . cmd

# setup the l i b r a r y search path to the 90nm l i b r a r i e s from TSMC

s e t a t t r i bu t e l i b s e a r ch pa t h /home/ a f i t e n 3 /gce07m/bbrakus / l i b r a r i e s /TSMCHOME/ d i g i t a l /Front End/...

t iming power/ tcbn90ghp 150a

# setup the hdl search paths to the cur r ent d i r e c t o r y

s e t a t t r i bu t e hd l s ea r ch path .

# load one o f the 90nm l i b r a r i e s

s e t a t t r i bu t e l i b r a r y tcbn90ghpbc . l i b

# read a l l the vhdl f i l e s

r ead hd l −vhdl TwiddleFactors . vhd FFTComponents . vhd FFT. vhd

# compi le and check f o r e r r o r s

e l a bo ra t e FFT

# synthe s i z e the des ign

synthe s i z e −to mapped FFT

# cr ea t e r epo r t s and save them to the cur r ent d i r e c t o r y

repor t t iming > t iming . txt

r epor t area > area . txt

r epor t power > power . txt

qu i t
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Appendix B. FFT Error Analysis Testings Scripts

Listing B.1: MATLAB Error Analysis Script
function [ ] = TestFFTerror ( log2length , input b i tw idth )

%TestFFTerror Generates t e s t input and FFT r e s u l t s data

% TestFFTerror ( log2length , input b i tw idth )

% log2 l ength = log base 2 o f FFT length

% input b i tw idth = bitwidth o f input data

length = 2ˆ log2 l ength ;

i n s c a l e = 2ˆ( input bitwidth −1)−1;

n = [ 0 :2 9 ] ;

data=cos (2∗pi∗n/10) ;

data=round( data ∗ i n s c a l e ) ;

% open f i l e to s t o r e input data

i n i d=fopen ( ’ i n p u t _ d a t a . t x t ’ , ’ wt ’ ) ;

i f ( i n i d == −1)

error ( ’ c a n n o t o p e n f i l e f o r w r i t i n g ’ ) ;

end

% sto r e input data in f i l e . . .

for j =1:30

fpr int f ( in id , ’ % d \ n ’ , real ( data ( j ) ) ) ;

fpr int f ( in id , ’ % d \ n ’ , imag( data ( j ) ) ) ;

end

for j =31: length

fpr int f ( in id , ’ 0\ n ’ ) ;

fpr int f ( in id , ’ 0\ n ’ ) ;

end

fc lose ( i n i d ) ;

for tfbw =6:2 :12

% s c a l e f a c t o r

t f s c a l e = 2ˆ( tfbw−1)−1;

% ca l c u l a t e FFT of data . . .

matlab=( f f t ( data , length ) ) ;

% s c a l e data based on l ength . . .

i f ( length == 8 | | length == 16)

matlab = matlab ∗ t f s c a l e ˆ1 ;

e l s e i f ( length == 32 | | length == 64)

matlab = matlab ∗ t f s c a l e ˆ2 ;

e l s e i f ( length == 128 | | length == 256)

matlab = matlab ∗ t f s c a l e ˆ3 ;

e l s e i f ( length == 512 | | length == 1024)

matlab = matlab ∗ t f s c a l e ˆ4 ;

end

%b it r e v e r s e data . . .

rev=zeros (1 , length ) ;

for j =0: length−1

b in s t r = dec2bin ( j , log2( length ) ) ;

b in s t r = f l i p l r ( b in s t r ) ;

b i t r e v = bin2dec ( b in s t r ) ;

rev ( b i t r e v +1) = matlab ( j +1) ;

end

% open f i l e to s t o r e matlab FFT data

f f t f i l e n am e = s t r c a t ( ’ f f t _ m a t l a b _ ’ , num2str( length ) , ’ _ ’ , num2str( tfbw ) , ’ . t x t ’ ) ;
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f f t i d=fopen ( f f t f i l e name , ’ wt ’ ) ;

i f ( f f t i d == −1)

error ( ’ c a n n o t o p e n f i l e f o r w r i t i n g ’ ) ;

end

% sto r e FFT data in f i l e . . .

for j =1: length

fpr int f ( f f t i d , ’ % d % d \ n ’ , round( real ( rev ( j ) ) ) , round( imag( rev ( j ) ) ) ) ;

end

fc lose ( f f t i d ) ;

disp ( ’ R u n t h e M o d e l s i m s i m u l a t o r to g e n e r a t e V H D L d a t a u s i n g t h e f o l l o w i n g p a r a m e t e r s : ’ ) ;

d i s p s t r=s t r c a t ( ’ i n p u t _ w i d t h = ’ , num2str( input b i tw idth ) ) ;

disp ( d i s p s t r ) ;

temp = log2 l ength + mod( log2length ,2 ) ;

output width = input b i tw idth + temp ∗1 + ( temp/2 −1)∗tfbw ;

d i s p s t r=s t r c a t ( ’ o u t p u t _ w i d t h = ’ , num2str( output width ) ) ;

disp ( d i s p s t r ) ;

d i s p s t r=s t r c a t ( ’ t f b w = ’ , num2str( tfbw ) ) ;

disp ( d i s p s t r ) ;

d i s p s t r=s t r c a t ( ’ l o g 2 N = ’ ,num2str( l og2 l ength ) ) ;

disp ( d i s p s t r ) ;

disp ( ’ ’ ) ;

disp ( ’ P r e s s a n y k e y w h e n d o n e . . . ’ ) ;

pause ;

% rename the generated VHDL FFT data

vhd l f i l ename = s t r c a t ( ’ f f t _ v h d l _ ’ ,num2str( length ) , ’ _ ’ , num2str( tfbw ) , ’ . t x t ’ ) ;

move f i l e ( ’ f f t _ v h d l . t x t ’ , vhd l f i l ename) ;

end

CompareDataStem( log2 l ength ) ;
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Listing B.2: MATLAB Stem Plot Script
function [ ] = CompareDataStem( log2N )

%CompareDataStem Compares e r r o r r e s u l t s and produces a stem plo t

% Deta i l ed exp lanat i on goes here

n=2ˆlog2N ;

for tfbw =6:2 :12

matlabFilename=s t r c a t ( ’ f f t _ m a t l a b _ ’ , int2str (n ) , ’ _ ’ , int2str ( tfbw ) , ’ . t x t ’ ) ;

vhdlFilename=s t r c a t ( ’ f f t _ v h d l _ ’ , int2str (n ) , ’ _ ’ , int2str ( tfbw ) , ’ . t x t ’ ) ;

matlabID = fopen ( matlabFilename , ’ r ’ ) ;

d i f fF i l ename=s t r c a t ( ’ f f t _ d i f f _ ’ , int2str (n) , ’ _ ’ , int2str ( tfbw ) , ’ . t x t ’ ) ;

vhdlID = fopen ( vhdlFilename , ’ r ’ ) ;

d i f f ID = fopen ( d i f fF i l ename , ’ wt ’ ) ;

i f ( d i f f ID == −1)

error ( ’ c a n n o t o p e n f i l e f o r w r i t i n g ’ ) ;

end

matlabTHM = fscanf (matlabID , ’ % f % f ’ , [ 2 i n f ] ) ;

vhdlTHM = fscanf ( vhdlID , ’ % f % f ’ , [ 2 i n f ] ) ;

matlabTHM=matlabTHM ’ ;

vhdlTHM=vhdlTHM’ ;

matlabRE = (matlabTHM( : , 1 ) ) ;

matlabIM = (matlabTHM( : , 2 ) ) ;

vhdlRE = (vhdlTHM( : , 1 ) ) ;

vhdlIM = (vhdlTHM( : , 2 ) ) ;

n=length (matlabRE ) ;

r eD i f f=zeros (1 ,n ) ;

imDif f=zeros (1 ,n ) ;

for i =1:n

i f (matlabRE ( i ) ˜= 0 && matlabIM ( i ) ˜= 0)

r eD i f f ( i ) = (100∗( vhdlRE ( i )−matlabRE ( i ) ) /matlabRE ( i ) ) ;

imDif f ( i ) = (100∗( vhdlIM( i )−matlabIM ( i ) ) /matlabIM ( i ) ) ;

else

r eD i f f ( i ) = 0 ;

imDif f ( i ) = 0 ;

end

fpr int f ( d i f f ID , ’ % f % f \ n ’ , r eD i f f ( i ) , imDif f ( i ) ) ;

end

reMaxError = max( r eD i f f ) ;

reMinError = min( r eD i f f ) ;

imMaxError = max( imDif f ) ;

imMinError = min( imDif f ) ;

t i t l e s t r i n g=s t r c a t ( ’ T w i d d l e F a c t o r B i t W i d t h = ’ , int2str ( tfbw ) ) ;

subplot ( 2 , 2 , ( tfbw −4)/2) ;

i f ( ( tfbw−4)/2 == 1)

stem ( [ 1 : n ] , r eD i f f , ’ bx ’ ) , xlim ( [ 0 n+1]) ;

hold on

stem ( [ 1 : n ] , imDiff , ’ r + ’ ) , t i t l e ( t i t l e s t r i n g ) , xlabel ( ’ n ’ ) , ylabel ( ’ % E r r o r ’ ) , xlim ( [ 0 n+1]) ;

e l s e i f ( ( tfbw−4)/2 == 2)

stem ( [ 1 : n ] , r eD i f f , ’ bx ’ ) ; , xl im ( [ 0 n+1]) ;

hold on

stem ( [ 1 : n ] , imDiff , ’ r + ’ ) , t i t l e ( t i t l e s t r i n g ) , xlabel ( ’ n ’ ) , ylabel ( ’ % E r r o r ’ ) , xlim ( [ 0 n+1]) ;

e l s e i f ( ( tfbw−4)/2 == 3)

stem ( [ 1 : n ] , r eD i f f , ’ bx ’ ) ; , xl im ( [ 0 n+1]) ;

hold on
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stem ( [ 1 : n ] , imDiff , ’ r + ’ ) , t i t l e ( t i t l e s t r i n g ) , xlabel ( ’ n ’ ) , ylabel ( ’ % E r r o r ’ ) ; , xl im ( [ 0 n+1]) ;

else

stem ( [ 1 : n ] , r eD i f f , ’ bx ’ ) ; , xl im ( [ 0 n+1]) ;

hold on

stem ( [ 1 : n ] , imDiff , ’ r + ’ ) , t i t l e ( t i t l e s t r i n g ) , xlabel ( ’ n ’ ) , ylabel ( ’ % E r r o r ’ ) , xlim ( [ 0 n+1]) ;

end

fc lose ( matlabID ) ;

f c lose ( vhdlID ) ;

f c lose ( d i f f ID ) ;

% open f i l e to s t o r e e r r o r data

e r r o r f i l e n ame = s t r c a t ( ’ i m a g e s \ N ’ , num2str(n) , ’ TF ’ , num2str( tfbw ) , ’ e r r o r . t x t ’ ) ;

e r r o r i d=fopen ( e r ro r f i l ename , ’ wt ’ ) ;

i f ( e r r o r i d == −1)

error ( ’ c a n n o t o p e n f i l e f o r w r i t i n g ’ ) ;

end

reMaxError = max(abs( r eD i f f ) ) ;

reAveError = average ( r eD i f f ) ;

reStdDev = std ( r eD i f f ) ;

imMaxError = max(abs( imDif f ) ) ;

imAveError = average ( imDif f ) ;

imStdDev = std ( imDif f ) ;

fpr int f ( e r r o r i d , ’ M a x r e a l e r r o r = % f \ n ’ , reMaxError ) ;

fpr int f ( e r r o r i d , ’ A v e r a g e r e a l e r r o r = % f \ n ’ , reAveError ) ;

fpr int f ( e r r o r i d , ’ S t a n d a r d d e v i a t i o n of r e a l = % f \ n ’ , reStdDev ) ;

fpr int f ( e r r o r i d , ’ M a x i m a g e r r o r = % f \ n ’ , imMaxError ) ;

fpr int f ( e r r o r i d , ’ A v e r a g e i m a g e r r o r = % f \ n ’ , imAveError) ;

fpr int f ( e r r o r i d , ’ S t a n d a r d d e v i a t i o n of i m a g = % f \ n ’ , imStdDev ) ;

f c lose ( e r r o r i d ) ;

end
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